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We propose algorithms for descriptive regularization that account for a priori concepts of the qualitative 
structure of the sought functions. The use of these concepts that possess stabilizing properties ensures rather 
high accuracy and quality of approximate solutions with an insignificant expenditure of computational 
resources. 

The ideas of descriptive regularization developed in [1, 2 ] are very promising in creating effective algo- 
rithms for numerical solution of incorrect inverse problems of heat conduction. A specific feature of the descriptive 
regularization method is account for a priori concepts of the qualitative structure of the sought functions (knowledge 

of the regions of fixed sign, monotonicity, convexity, etc.). The use of these concepts that possess stabilizing 

properties [3, 4 ] ensures uniform convergence of approximate solutions. 
1 ~ We consider the basic points of constructing algorithms for descriptive regularization using, as an 

example, a boundary-value inverse problem for the quasilinear Stefan problem that consists in determining the 

temperature distribution u(x, t) in the region Q --- Q1UQ2, the front of phase transition ~(t) for 0 -< t ___ T, and 

the boundary conditions v(t) for 0 _< t _< T from the conditions [5 ] 

c (x,  t ,  u)u t - ( a  (x,  t ,  u)Ux) x + b (x, t ,  u)Ux = f (x, t ,  u),  

(x, OeQ~ ={O<x<,(t), o<t_<r}, 

(x ,  t) e Q 2 = { ~ ( t ) < x < l ,  O < t < T } ,  (I) 

ulx=0 = v ( t ) ,  O< t<_ T ,  (2) 

a ( x ,  t ,  U) Ux]x= l= p ( t ) ,  0 <  t_< T,  (3) 

U lx=~(t) = u*(t), 0 < t < T ,  (4) 

7 (x, t ,  u)Ix=~(0 r = [a (x,  t,  u)Uxlx=~(t)+ z (x,  t, u) lx=~( 0 , 

ul t=o=~O(x) ,  O<_x<_l,  ~l t=0=r /0  

and the additional condition at x = l 

0 < t _< T, (5) 

u Ix= l = g ( t ) ,  O<_t<_T.  (7) 

(6) 
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We assume that the additional information contains data on monotonicity and convexity regions of the 

sought boundary  function and has the form 

v E V/~ , V~ = {v  ~ VR , I~ (t) vt (t) > O , O < t < T }  , (8) 

v E Vv , Vv = {v  E VR , v (t) vtt (t) >_ O , O <_ t <_ T }  , (9) 

where/~(t)  and v ( t )  are parametric functions; lu(t) = sign vt( t ) ;  v(t) -- sign vtt( t);  and VR is a set of boundary  

functions v( t ) :  

[1 v 1] L2[0,T l < R ,  R = const > 0 .  

The method of descriptive regularization of the inverse problem (1)-(7) based on account for the a priori 

constraints (8) and (9) reduces to the variational problem 

2 
i n f J ( v ) ,  g ( v )  = II u I x = t -  glb.2[0,Tq , 
vE V 

in which V is a set of admissible boundary functions. Depending on the availability of one or another  kind of a 

priori information, V =  V/~, V = V~, V =  vt, n v ~ ,  and u l x =  I is the spur of the solution of the direct Stefan problem 

(1)-(6) corresponding to v E V  at x = t .  

Numerical  implementat ion of the descriptive regularization method entails the problem of nonl inear  

programming 

N ^ ^ 

min,, , , I ( v ) ,  I ( v )  = Y~ p j ( u M ] - - g ] ) Z ,  (10) 
v~ V ]=0 

^ 

where v = (v0 . . . . .  V N) is a net boundary  function on the net wr = {t b 0 = to < ... < tN = T, tj - tj-1 = ~j}; p j  are 

coefficients of the quadrature  formula; & = g(t j ) ,  uij (i = 0, M, j = 0, N) is a solution of the difference analog of the 

direct Stefan problem (1)-(6) on the nets co h • 033 in the region Q, co h = {xi, 0 = xo < . . .  < XM = l, x i  - xi-1 = hi}; 
A f ~  

and V is a set of admissible functions v that comply with the constraints: 

N Z R 2 (11) 
Z pjvj  _< , 

j=0 

/2j (vj+ I -- vj) >-- 0 ,  j = O ,  N - 1 , ktj = l~ ( t j ) ,  (12) 

\ 

Vj+ 1 -- Vj Vj -- v j_  1 I ~ 0 j = 1 N - 1 v j  = v ( t j ) .  (13) 
% 1  r1 ' ' ' 

2 ~ The  descriptive regularization algorithm devised in [5 ] relies on the method of projecting conjugate 

gradients for the numerical minimization (10)-(13),  which has a sufficiently high rate of iteration convergence and 

permits structural features of the sought function to be revealed in a few steps. An iteration process of this method 

in the f in i te -d imens ional  analog L2r(co ~) of the  space  L2[0,  T]  is cons t ruc ted  proceeding f rom the initial 
^ 

approximation v s (s = 0) by the equations 

A A 

v S + l = ~ , ( ' v S - a s r S ) ,  s = 0 ,  1 . . . . .  

r~0 gradL2r v 0 ^ ^ ~'s-1 = I ( ) ,  r S = g r a d L 2 ~ I ( v S ) - - f l s  , s =  1 ,  2 . . . . .  
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(gradL2 ~ I (~'s), gradL2~ I (~s-1)  -- gradL2 r I (~S))L2 ~ (14) 

II gradL2r I (~s-l)1122 ~ 

n 

in which ccs ,.,> 0 is a descent step chosen from the condition of monotonic decrease of the functional I(v): 
A j /_  A ^ ,~, �9 

i(v s 1) _< I (vS), s -- 0 , 1  . . . . .  gradL2r I(v) is the gradient of the functional I(v) in L2r(a~r), ~V m the operator of 

projection onto the set V: 

^ ^ ^ " 
II (v) - = r a i n  II w - v II Lz " 

w u v  

One of the main problems in realizing process (14) is an effective method of calculating the gradient. To 

solve this problem, we resort to results [6 ] regarding differentiability of the functionals determined in the solutions 

of the quasilinear Stefan problem. From discrete analogs of the relations for the increment AJ(v) relative to the 

increment Av E V: 

AJ (v) = (gradL2 d (v),  AV)L2[0,T] + o (11 A V l I L z t 0 . T ] ) ,  

AJ(v)  = ( g r a d w 2 2 j ( v )  , Av)w~[O,Z] + o(11Avl[ 2 W2 [0,T]) 

and the representation established in [6 ]: 

T 

Ad (v) = f a (x  , 
0 

t ,  u)  Ix--0 Av (t) d t  + o (11 v II 2 re2to,r]) , 

we may obtain, by virtue of the equivalence of the norms in finite-dimensional spaces, an equation for calculating 

the gradient 

^ ~01/-- ~00] (15) 
gradL2 T I  (v) = (I  0 . . . . .  IN) , I) = ao] hi , ] = 0 ,  N ,  

in which ~ij is a solution of the difference analog of the conjugate problem [6 ] on the nets co h • cot; and aoj is the 

value of the coefficient a(x,  t, u) at x = 0, t -- tj, and u -- uoj = v? The form of the conjugate problem for the inverse 

Stefan problem considered is presented in the article "Inverse Stefan problems" by N. L. Gol'dman in this same 

issue of the journal. 

Determination of the gradient of the functional I (v  ~) on each iteration of the process (1 4) incorporates three 

steps: 

1) numerical solution of the difference analog of the direct Stefan problem (1)-(6) with the boundary 

function v s = (~0 . . . . .  ~ )  for determining uij, ~j, i = O, M,  and ] = 0, N; 

2) subsequent solution of the difference analog of the conjugate problem using the obtained uij and ~j for 

determining v/q, i = 0, M, ] = 0, N; and 

3) calculation of the components of the vector gradL2~ I(~')from Eq. (15) using the obtained Wij- 

The suggested method for calculating the gradient provides a noticeable savings in computer time. The 

volume of computational operations (of the order of M x N) is determined only by the effectiveness of the numerical 

algorithms for solving the direct Stefan problem and the corresponding conjugate problem. At the same time, the 

approximate method of calculating I) q = 0, N) via a difference approximation of the partial derivatives OI/Ovj 
results in an (N+l)-fold numerical solution of the direct Stefan problem, i.e., requires a computational expenditure 

at least N times as great and, furthermore, has a poor accuracy. 

Another problem of numerical minimization, viz., construction of an effective procedure of projection onto 
the set of constraints (1 1)-(13), is solved with allowance for the specific properties of these constraints. 
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A 

If the the structure of V is determined by conditions (12), use is made of an explicit form of the projector 
onto a set of piecewise monotonic functions [7 ] that provides a mean-square approximation in this class of functions 

in N 2 operations. For monotonically increasing admissible functions (i.e.,/zj = 1, j = 0, N - 1 ,  the algorithm for 

mean-square approximation proposed in [8 ] permits the projection onto such a set in = 2N operations and includes 
three steps: 

1) for the projected function v(t), the integral 

t 

w O(t) = f v(y) dy; 
o 

is calculated; 

2) for the function w0(t), the upper envelope w~ of convex functions located on the section [0, T ] below 

wo(t) is constructed; 
3) the derivative d / d t  = w~ is calculated, which is exactly the solution for the projection problem. 

A 

Should the set V include constraints (13) of the piecewise convexity of admissible functions, an algorithm 

[9 ] is employed to realize the projection. This algorithm accounts also for constraints prescribed as 

~j_< (vj+ 1 -  vj)/vj+ 1 </z j ,  j = 0 ,  N -  1, 

where ~j and ~j are known quantities. The algorithm for projection onto a set of downward convex functions (i.e., 

for vj =1, j - -  1, N - l )  suggested in [8] is very efficient. 

Concluding the presentation of the basic points of constructing the descriptive regularization algorithm, we 

note its universality in a wide class of inverse Stefan problems. This should be attributed to the quantity of the 

algorithm: specifying the form of the purpose functional and the equation for calculating its gradient for the inverse 

problem under consideration, it is possible to effectively use one and the same software for the numerical 
minimization of the functional, the procedure of projecting onto a set of constraints, and the numerical solution of 

the direct Stefan problem and the conjugate problem. 
3 ~ We present the results of numerical experiments on using the descriptive regularization algorithm in 

solving various inverse Stefan problems. 
In model calculations for the boundary-value inverse Stefan problem (1)-(7) we sought the boundary 

conditions at x = 0 [5 ]: 

Vex (t) = 0 .75  + 0 .25  (t + I) 2 0 < t _<I 

and the corresponding exact solution of the direct Stefan problem (1 ) - (6 ) :  

Uex (x,  t) = 0.75 + 0.25 (t + 1) 2 - x ,  ~ex (t) = 0.25 (t + 1) 2 

with the following input data: 

0 _ < x _ _ l ,  0 _ t _ l ,  a - - - 1 0 + u ,  b = - ( l + x ) ,  c = l ,  d = 0 ,  

f = x + 0 . 5 ( t +  1) p = - 9 . 7 5  0 . 2 5 ( t +  1) 2 * , - , u = 0.75, 

y = 0 . 5 ,  X = 0 . 2 5 ( t +  1), ~o= l - x ,  r / 0=0 .25 .  

The additional information (7) is prescribed at x = 1: 

g (t)  = o . z 5  (t  + 1) 2 - 0 . 2 5 .  
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Fig. 1. Model problem: 1) exact solution, 2) initial approximation, 3-5) 
approximate solutions: 3) without conditions (8) and (9); 4) with condition 
(8); 5) with conditions (8) and (9). 
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Fig. 2. Problem of a continuous ingot: 1) hole profile, 2-4) temperature at the 
ingot surface: 2) without conditions (8) and (9); 3) with condition (8); 4) with 
conditions (8) and (9). ~, z, m; v, ~ 

t.204 



f-10 3 

' /  
2 

1 I 

0.5 /.0 r 

Fig. 3. Problem of plate melting: 1-3) heat pulse of: 1) parabolic; 2) uniform; 
3) Gaussian type. f, cal/(cm 2. sec); r, cm. 

Under the effect of the boundary conditions Vex(t) , the phase transition front ~ex(t) moves to the right, 

reaching the fight boundary of the region x = 1 at t -- 1. A set of admissible boundary" conditions is composed of 

monotonically increasing downward-convex functions, i.e., in a priori information (8) and (9), ~t (t) = 1 and v(t) 
-= 1 for 0 _< t ___ 1. The value of R is taken to be 10. 

The difference algorithms of the direct Stefan problem and the conjugate problem were constructed using 

variational-difference schemes on the uniform net co h with a mesh width of h = 0.04 (the number of mesh points 

was M = 25) and the nonuniform net o~r with mesh widths of Zmax = 0.1 and Zmin = 0.025 (the number of mesh 

points was N = 37). 

Figure 1 gives for comparison the predictions (the boundary conditions and the  corresponding solution of 

the difference Stefan problem) obtained with allowance for constraints (12) and (13) and without them. The 

predictions are conducted in the presence of errors in all input data of the inverse problem introduced by random 

disturbances with dispersions of cr = 0.05 distributed uniformly on [-1, 1 ]. The descriptive regularization permits 

obtaining approximations (curves 4 and 5) that are quite satisfactory from the viewpoint of accuracy and quality, 

though the initial approximation in the process (14) is rather "crude" in comparison with the exact solution (curves 

1 and 2, Fig. la). A lack of a priori information as to the qualitative behavior of the sought conditions leads to 

worse results (curve 3). In particular, the difficulties of determining the boundary functions near the final instant 

of time tN -- 1 fail to be overcome. These difficulties stem from the fact that the component I~v of the vector 

gradLzz 1(~') is equal to zero. Therefore the minimization process (14) depends strongly on the choice of the initial 

approximation at t = tN:vSg = yON when s > 0. 

It took five iterations of the method (14) and insignificant expenditures of computer time (from 60 to 110 

sec on a BESM-6 computer) to attain the results presented in Fig. 1. Here the values of the minimized functional 

manage to decrease to the level of the total errors of the input data and the approximation error introduced in 

conversion from the initial problem to its difference analog. Subsequently, as the number of iterations increases, 

the process of refining the approximation in the vicinity of the exact solution slows down sharply. This property of 

the projection method for conjugate gradients is appropriate for use as a halt criterion. 

Figure 2 gives the results of applying the descriptive regularization algorithm to calculations of the boundary 

conditions on a cooled surface of a crystallized continuous cylindrical copper ingot [10]. The corresponding bound- 

ary-value inverse Stefan problem on determining the temperature v(z) at the ingot surface r = rcr that ensures the 

desired shape of the hole (of the crystallization front ~(z)) reduces to the variational problem 

infJ(v) ,  J(v) = II u I,=e(=)- u*llL2tO,nl, 
vE V 
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Fig. 4. Advance of melting fronts in a plate, corresponding to a heat pulse of: 

1) parabolic; 2) uniform; 3) Gaussian type. ~, cm; t. 10 -1, sec. 

where u(r, z) is a solution of the boundary-value problem for equations of the type (1) (the role of x and t is fulfilled 

by the variables r and z) in the region ~(z)< r < rcr, 0 < z ___ H with the specificed boundary r = ~(z); H is the 

length of the calculated section of the ingot; and u* is the crystallization temperature. The calculations are carried 

out with consideration of a priori concepts of a monotonic decrease in the boundary temperature and flux at the 

crystallizer exit based on experimental data. This a priori information can be utilized in specifying the set of 

admissible boundary conditions. 

The case of a copper ingot is less favorable compared to metals and alloys with a lower thermal conductivity 

because the ranges of applicability of one-dimensional casting models for copper do not exceed distances equal to 

3/4 of the hole depth. A descriptive regularization method based not only on quantitative but also on qualitative 

information on the temperature and flux behavior at the ingot surface permits obviation of this difficulty. For the 

hole profile ~(z) (curve 1, Fig. 2), we obtained approximate solutions that are quite satisfactory in terms of accuracy 

and quality throughout the hole depth, as opposed to the approximation found without account for such information 

(compare curves 2-4 in Fig. 2). 

We now present the results of applying the descriptive regularization algorithm to numerical study of the 

effect exerted by the shape of the heat pulse of a laser source of energy on the formation of a molten opening of 

prearranged size in a thermally thin plate. Studies [11, 12 ] present statements of the corresponding coefficient 

inverse Stefan problems in accordance with the character (uniform, Gaussian, or parabolic) of the spatial 

distribution of the intensity of the thermal effect. The descriptive regularization algorithm allows finding the shape 

of the heat pulse that possesses the required qualitative characteristics and provides the desired course of the, plate 

melting process. Curves 1-3 in Figs. 3 and 4 reflect the results of numerical calculations for melting of a Duralumin 

specimen in producing an opening of the same radius r 0 = 0.5 cm over a time t -- 0.0144 sec by the action of heat 

sources with different intensity distributions across the radius of the irradiation spot. With a parabolic heat pulse 

(curves 1, Figs. 3 and 4), at the instant of time tmelt  = 0 . 0 0 9 8  sec two melting fronts are formed, one of which ~1 (t) 

moves toward the center of the irradiation spot and the other ~:(t), toward the spot boundary r 0 = 0.5 cm. By the 

instant of time t - 0.0144 sec, the whole of the required opening is molten. Under the effect of uniform and Gaussian 

heat fluxes (curves 2 and 3, Figs. 3 and 4), at the center of the irradiation spot a single melting front is formed at 

the instants of time tmel t  = 0.0086 sec and, correspondingly, tmelt  = 0.0082 sec that moves toward the spot boundary 

r0 = 0.5 cm and reaches it at the instant of time t = 0.0144 sec. The calculations took 90 sec of computer time on 

a BI~SM-6 computer. 

Analysis of the numerical results permits the conclusion that the suggested descriptive § algo- 

rithm appreciably improves the quality of approximate solutions of inverse problems with an insignificant increase 

in the volume of computational operations. 
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